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A CONTRIBUTION TO THE CONTROLLABILITY
OF TIME-LAG SYSTEMS

A, K. Choudhury

ABSTRACT
N. a. s. ¢. of complete controllability of a class
linear time-invariént delay-differential system are
presented, and the result is expressed in an algebraic

form.



A CONTRIBUTION TO THE CONTROLLABILITY
OF TIME-LAG SYSTEMS

1, INTRODUCTION

Consider the system
X(t)y=Ax(t) +Bx(t-h)+Cu(t), t>0 (1)

where x (t) € R", A and B are constant n X n matrices. C is a constant n X m
matrix, and u (t) is a continuous m-dimensional vector, the control function; h is
a positive number, the delay. This paper concerns a broperty of "complete
controllability" which is a particular case of complete controllability to an
arbitrary function. The latter concept haé been studied by V. M. Popov [6],

who gave a necessary and sufficient condition of controllability in this sense in

an algebraic form.

In this paper we shall show that the necessary condition of complete control-
lability to én arbitrary function is also a.necessary condition of the particular
property of complete controllability provided A and B satisfy some additional
conditions. If the rank of the matrix B is 1 or n and the pair (A, B) is completely
controllable, then the above additional conditions are automatically satisfied
and in these cases the n. a. s. c. of controllability to an arbitrary fﬁﬁétion is
also a n. a. s. c. of complete controllability. Earlier works on the above sub-
ject were done by F. M. Kirillova and C. V. Curacova [8], and L. Weiss [5].

L. Weiss also gave a necessary and sufficient condition of controllability involv-

ing functional condition.



2. DEFINITIONS
The use of operator symbolism is of some use in the solution of delay-

differential equations. We introduce the operators s and z by the relations

s x (t)y = 4x(1) (2)

t

zx (t) = x (t - h). (3)

For any real numbers k and w, we define

(k 2)¥ x (t) = k® x(t - «h) (4)
(k s)° x (t) = kw 7% (1) (5)
dt®

We define the sums and products of these operators in the usual way:

(s +2) x(t) =s x (t) + z x (t) (6)

(s z)x(t):s(ZX(t)), (7)

etc.
Two operators are called equal, if when applied to an arbitrary function, they
produce the same result. With these definitions, the commutative, associative,
and distributive laws hold. It can be shown that
@y

z 122y (t) =272 21 x (1) =2 1%%2 (t) = x (t ~ (o, + w,) h). (8)

We introduce the matrix r (s), given by



T - 9)
(=(G1-H"8 det (s I -A)’

where p (s) is a n X n matrix each of whose elements are polynomials in s of

degree less than or equal to (n - 1).

The set of all real functions f: [t,, t2] -— R™ having continuous kth deriva-

tives is said to belong to Ck [t p byl
Let us introduce the operator
L(t; f(t-h)), t,;<tg t,)
f()eC®[t, -h, t,-h],

which is defined as follows

10

L(t;f(t—h))ép(s)F(t—h); tystst,, (19)
where F (1) ¢ C" [t, - h,t , — h]-and satisfies the differential equation

det (sI-A)F(t-h)=f(t-h) t,st<t,
and p (s) is defined in equation (9).
Ifg (t) e C° [- h, 0] and

4

g (t)=det (sI-A) ¢(t),L>n -h<t<O,
then A1
- L(t; g (t =h))=p(s)det(sI-A) ¢ (t - h), (11)

0<t<h.



We define L2 (t; f (t - h)) by the following relation

L2 (& f (t-2h) AL (t; f, (t - h)), t ststy, (12)

where the function f1 (-): [t1 ~h, t2 - h]- R" is given by
13
£, (8) =L (t; f (t - hY)), t;-h<ts<t,-h (13)

and the operator L (t; f (-)) is defined as above. Combining equations (12) and

(13) we have

L? (t; f (t - 2h)) =L (t; L (t-h; f (t-2h))), t,Stst,. (14)
In general we define
r+1
L (t;f(t-(r+1)h)),t15tst2
by the relation
L! (t; £ (t -(r+ Dh)) AL (t; f_(t-h)),t, <tg t,, (15)
where f_ (t) is given by
(16)

f, (t) =LF (t; f (t -1 hy).

By L (0; g (t - h)) we shall denote the value of L (t; g (t-h))att=0, and simi-
larly by L3 (2h; g (t - 3h)) we shall denote the value of 1.3 (t; gt -3h)) att=
2h etc. With obvious modifications the domain of L (t; g (t - h)) can be extended

to a matrix function.



We introduce the expression G (s, z) strongly related to the transfer-

function of (1) by the following relation

G(s, z2)=(sI-A-Bz)!cC (18)

where s, z are two auxiliary variables. We observe that the usual transfer-
function of (1) is

G (s) = G (s, e~sh). (19)
Using explicit expression of the matrix (sI - A - Bz)"! C, we can rewrite

equation (18) as

(Py () V(2), P, () V(D) -+, B, () v (2) (0

G(s, z2)=(sI-A-Bz)y1cC= det ST-A-B2)

where v (z) is the column vector

1

4

v (2) =| 22 (21)

Zn—l

and p;(s),j=1,2,..., mare polynomial matrices of the form

n—1
i=0



where P;j»1=0,1,...,(n- 1) are constant n X n matrices.

Complete Controllability

The system (1) is called completely controllable if for every € >0, (¢ < h),
there exists a number T > h and a continuous control function u t), te [0, T],
such that the corresponding solution x (t; g) of equation (1) for the initial function

g € C° [- h, 0] satisfies the target condition
X(t; g) =0, te[T-h+e, T.

Finally, to simplify the calculations, we introduce the notation

A(s)=det (sI-A). (22)

3. REPRESENTATION FOR THE SOLUTION OF EQUATION (1)
In this section we shall obtain the representation for the solution of equation
(1) in terms of operators introduced in the previous section, and the representa-

tion is obtained by combining the results obtained in (6] and [2].

Equation (1) can be expressed as

(SI—A—Bz)x(t):Cu(t),t>0. (23)

Let
x (t) :wl(t) +w2(t) + . .,.‘+wm(t).

Then the above equation can be expressed as



Z[(S I-A-B2)a (t)-C, u ()] =0, ' (24)
i=1 )

where C;,i=1,2,..., m are the m-columns of the n X m matrix C and u;, u,,

. ., u  are the m- components of the column vector u (t).

Multiplying equation (20) on the left by (sI - A - Bz) x det (sI - A - Bz), we
obtain

(ST-A-B2) (p, () (2), B, (5) v (2), - P (S) v (2))
(25)

= (C¢,C,--.,CHydet(sI-A-Bz).
The above relation is true for all s, z for which det (sI - A- Bz) # 0. However,
it can be shown as in [6] that the above relation is true for all s, z. Equation
(25) can also be written as

(s I‘—A—Bz)pi‘(s)v(z):Ci det (sI -A-Bz2),
(26)

i=1,2 ..., m.

Let us consider the following scalar delay-differential equations

det (sI-A-Bz)& (t) =u, (t), t>0. £ (t)=0, te[-nh, 0
(27)

-
h

1, 2 - om
and the functions

@ () =p (Y v(D & (1), t>-h - (28)

where &, (t) are the solutions of equation (27) for the Vanishing initial conditions.



By virtue of relation (26), we observe that the o ; (t), satisfy the differential

equations

(sI-A-Bz) w; (t)y=C,u, t>0
(29)

and the initial conditions

@ (t-h)=zaw (t)=p, (s)zv(z) & (1) =0, telo, H
' (30)

Therefore the function

x®=) @ =) 0 () V(D E (1) t >0 1
i=1 i=1

is the solution of equation (1) for the vanishing initial condition. Any general
solution of equation (1) will be given by the above considered particular solution,
plus a solution of the homogeneous equation, obtained from equation (1) for u =

0. Thus any solution of equation (1) can be expressed as

m

(=) B () V()& () +x (5 g, t>0 (32)

i=1

where the €;(t) .are the solutions of equation (27), and x (t; g) is the solution

of equation (1) for u = 0 and the initial function

X (t) =g (t) = A& (s) ¢ (t), t e [-h, O]



10

. and is given by [2]

x (65 @) = p* () &7 () b (t = £ h) + BNt DY X, (Mpagn @9
It e [(r-=1)h, rhl,
where
_d
D - E’
(34)

X, (1) = 67D @y g1y - p @) £ @) 6 (7 - b,
W_(t, D)= LTl (t; eA(t-(r—l)h))Ar—l (D)
| +LT72 (t; eACETCm DAL (DY 4oL
+ L (t; eACtTM)) A1 (D)
+L772 (15 AT Y (D) A2 (D)
LI (6 MO DY Y () 872 (D)
# o oo+ L(t; A2y Y (D) AT2 (D)
F LT3 (1 ACGTDMY) Y (D) A77F (D)
+ L4 (4 ATy Y (D) A3 (D) £ -
+L(t; A3y Yy (D) A3 (D) + -

+ L2 (t; eA(t=( r—l)h)) Yr—3 (D) N2 (D)



11

+ L (t; eACt=(r=2)h), Y._; (D) &2 (D)

+ L (t; eA(t7(r=1yh)y Y., (D) A (D)

+ eA(t=(r=1)h) Y,., (D) + eACt=(r=2)h) Y_, (D) A (D)

Foe et éA(t‘h) Y, (D) AT2 (D) 4 eAt Ar-l (D), (35)
and Y,_, (D) is given by the following recurrence relation
Yoy D) =p™ 1 (D) = L7 ((r ~ 1) k; eAt=(r=Dy Ar-1(py
L2 ((r - 1) by eA(t-(r—l)h)) Y, (D) A2 (D)
= L7 ((r - 1) by eAt(r=Dh)y Y, (D) A™3 (D)
=+ oo =L ((r = 1) by eACt=(r=Dh)y Y,_, (D), (36)

where p (D) and A (D) are defined in equations (9) and (22).

4. NECESSARY AND SUFFICIENT CONDITIONS OF COMPLETE
CONTROLLABILITY
In this section we shall present sufficient condition of complete control-
lability and show that the sufficient condition is also a necessary condition pro-

vided A and B satisfy some additional conditions.

Theorem 1
The sufficient condition of controlling any solution of equation (1) to the

target function W (t) = 0, t [(m -~ 1) h + €, nh] is that there does not exist any

n-vector

10
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d(s):d0+sdl+s2d2+--}.+smd,

m

where d, # 0, and d,, d,;,d,, . .., d, are n-dimensional constant vectors, such

that
dT (s) G (s) = 0. (37)
The above condition is also necess'ary provided that
dT(s) p"(s) and dT(s)W_(t, D)

are not simultaneously zero.

Proof of Necessity

We prove by contradiction. Suppose that there exists a polynomial vector

d (s) such that

df (s) G (s) = 0,
“and

dT(s) p” (s) and dT(s) W (t, D)

are not simultaneously zero, and any solution of equation (1) is controllable to

the target function, i.e.,

Wt)=0, tel(n-1)h+e nhj. ‘ (38)
Combining equations (38) and (32), we have

m

0 Z P () V(D& (1) +p ()8 (s) g (t-nh)

i=1

11
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+ W (6, DY X_ (M]- st e[(n-1)h+e nh. (39)

Since dT (s) G (s) = 0 implies that
dT(s) P, (s) =0, 1 =1, 2, « ., m,
we have from equation (39)

0 =dT(s) po(s) At n(sy ¢ (t - n h
(40)
+ LdT (s) W, (t D) X, ()], L,

tel(n-1)h+e nhl.

Since dT (s) p™ (s) and dT (s) W_ (t, D) are not simultaneously equal to zero, we
can choose ¢ ¢ C’E [~ h, 0], and hence the initial function g (*ye C° [-h, 0],

such that

dT (s) p" (s) pbn é (t -=nh)
(41)
AW D)X (M ,., ¥0.teln-1)h+e nhl,

and hence a contradiction.

Proof of Sufficiency

Since dT (s) G (s) # 0, we have
dT(s) p; (s) v (e*™) £0
for at least one i, say i = j. Therefore as in (6], it follows that det p; (8)#0

and the remaining part of the proof of sufficiency follows as in [6].

12
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Cor 1. If rank B = n, then the n. a. s. c. of complete controllability of the system

(1) is that there does not exist any non-zero n- vector d(s)=d; +sd + s2 d,

+...+s"‘dm,d0#0suchthat

dT (s) G (s) = 0.

Proof. Suppose that d'(s) p"(s) = 0, where p(s) is defined in equation (9). We

observe that equation (9) and d'(s) p(s) = 0, imply that

42
(dg+sd¥+s2d'§+--.--+smd$)(Ar(s)+B)“:0. ( )‘

Dividing both sides of equation (42) by s™ and taking limit as s — ©, we ob-
tain noting that r (s) -0 as s~ ®,

dI B" = 0. (43)

Equation (43) contradicts that rank B is n and therefore dT (s) p" (s)# 0,

n. a. s. ¢, follows.

Cor 2. If the pair (A, B) is completely controllable, and the rank of the matrix
B is one, then the n. a. s. c. of controllability of the system (1) is that there
does not exist any n- vector d (s) = d, +sd + s?2d,+...+s"d_d # 0, such

that

dT (s) G (s) = 0.

Proof. Suppose that
dT(s)p"(s) =0 44
df (s)W_(t, D) =0 (45)

13
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We observe that equations (44) - (45) imply that

df (s) x (t; ) =0, YgeC® [-h, O], t 2 (n=1) h. (46)

Since rank B = 1, B can be expressed as
B=bcT, (47)

where b, ¢ are n- vectors and ¢T denotes the transpose of the column vector c.

Now
dT (s) p" (s) = dT (s) (s - A);l b cT pn-1, (48)
where o = T (sI - A)7! b is a scalar quantity and not equal to zero, since the
pair (A, beT) is completely controllable.
Therefore equation (48) implies that

dT<S) (SI—A)-leTZO, (49)

Using equations (9) and (49) and taking limit as s~ ©, we obtain the following

equations

d'B=0 (50)
dg_lB-{-d::AB:O (51)
dT ,B+dT AB+dTA2B =g (>2)
53
dIB+d§AB+d§A2B+-m--+d£ AT1B=90 %9)
(d3+dTA+dTAZ4 ... 4 dTA™ Ai B = 69

i=0,1,2 3...

14
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From equations (50) - (54) and (1), we observe that

df (s) x (t; g) =dT (A) x (t; g), t >0 (55)

and
st dT (s) x (t; g) =dT (A) A' x (t; g), t > Q. (56)

Using Cayley—Hamiltdn theorem and equations (46), (55), (56), we observe that

det (s I -A)dT (A) x (t; g =0
A (87)

VgéCo [~ h, O]-,VtSO

and

dT (A) x (t; g) =0, t € [(n-1)h, nh]
(58)

VgeCO[-h, 0],
We observe that dT (A) x (t; g) satisfies the differential equation (57) for t > 0

and is identically zero in ((n - 1) h, nh) and therefore

dT. (A x (t; g8) =0,V t 20, (9)
But we could choose g such that
x (0; g) = d (A).
Hence from equation (59) we obtain
(60)

which is a contradiction. Hence
d® (s) p” (s) and dT (s) W (t, D)
are not identically zero in this case and consequently follows the n. a. s. c. of

complete controllability.

15
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